Difficulties with Fusion

Dr. Stuart Carroll
FRANZCO

Binocular vision

Low grade
Simultaneous perception
High grade
Sensory Fusion
Stereopsis

Images that are sufficiently similar
A well-trained sensorium that maintains the ability process these images
An intact efferent neuro-muscular system that can produce a response to do so (motor fusion)

Case 1
- 85yo F
- Constant diplopia since (minor) head injury two years ago
- 10Δ left esotropia, normal ductions, comitant, can intermittently fuse with prism, not consistent
- Bilateral cataract L > R moderate subcapsular component
- VAR = 6/9 c VAL = 6/12 c
- Planned cataract surgery
 - Warned of diplopia being clearer, need for further treatment etc
Case 1 - Management

- Postop 1st eye L 6/6 – still c/o diplopia
- Postop 2 R 6/7.5 – very occasional diplopia
- Fusing well with easily decompensated phoria
- Watching for now, doesn't want prism glasses as happy

Case 2

- 56yo F writer
- Previous R multiple retinal detachment surgery
 - One total RD, previous buckle
- Shuts right eye with reading
- R 6/180 pseudophakic with ERM / SiOil in situ
- L 6/5 pseudophakic
- Right hypertropia D 12pd, N 5pd
- Unable to fuse with prism
- Amsler grid distortion and aniseikonia ++

Case 2 - Management

- Occlusion of right eye
 - Did not tolerate occlusive CL
 - Does not want occlusive spectacles
Case 3

- 56yo M
 - Basal skull fracture 2000, motorsport accident
 - Persistent constant horizontal diplopia since that time, no treatment
- VAR=L=6/5 unaided, healthy eyes
- 30Δ L esotropia and 14Δ L hypertropia
- Unable to fuse with prisms, “would be quite happy” with prism glasses if they could work.

Case 3

- Marked fundus excyclotorsion L eye
- Double Maddox road = 30 degrees excyclotorsion
- Surgery stage 1: L inferior oblique recession and bilateral medial rectus recession
- Post-operative alignment
 - No vertical deviation in primary position
 - 10Δ residual esotropia, cannot fuse with prism
 - 25° excyclotorsion
- Planned for stage 2 surgery – bilateral harada-ito procedure and lateral rectus resections

Case 4

- RE -2.00 LE -8.00 for laser refractive surgery
- Good fusion with 60° stereo
- Post-op intractable diplopia from induced aniseikonia of 7%
- Be careful shifting anisometropic correction from spectacle to corneal plane
- Could have been predicted by
 - pre-op CL trial
 - the recognition in the history that previous problems with CLs might be for this reason
Images that are not similar

- Reduced image quality
 - Media opacity, poor afferent visual function
- Image size or orientation non-fusable
 - Aniseikonia (basic and refractive)
 - Torsion
- Distortion of image
 - Metamorphopsia

A well-trained sensorium that has the ability process these images

- Central loss of fusion
- Horror fusionis
- Hemifield slide
- Fixation switch diplopia

Central fusion disruption

- Acquired cause of persistent diplopia without suppression
- Images similar but cannot fuse with prism
- Common post closed-head trauma
- Vertical bobbing of non-dominant eye described
- Often permanent, sometimes improves
- Occlusive treatment often required
Case 5

- 70yo male
 - Bilateral cataracts
 - History of left amblyopia with 5Δ left esotropia, no diplopia
 - BSCVA R 6/18 L 6/60
 - Previous BSCVA 10 years ago R 6/6 L 6/9

Which eye to do first?

Fixation switch diplopia

- Occurs in adults who've had previous (micro) strabismus with suppression / and or amblyopia in their non-dominant eye
- A change in refraction (e.g. post-laser or cataract surgery) encourages fixation with their non-dominant eye
- Diplopia results

- Usually can be managed with optical correction to encourage fixation with the dominant eye

Hemifield slip / slide
An efferent neuro-muscular system that can produce a response to do so

- Horizontal and vertical deviations can be treated with prism or re-alignment surgery relatively easily
- Good fusional amplitudes facilitate single vision with optical or surgical treatments
- Torsion poses a more challenging situation as it cannot be corrected optically

Summary - Barriers to Fusion

- Images too dissimilar
 - Clarity
 - Size / Aniseikonia
 - Orientation / torsion
 - Distortion / metamorphopsia
- Central causes
 - Central loss of fusion
 - Loss of overlapping visual field
 - Horror fusionis
 - Abnormal visual development from childhood

Atropine for the Treatment of Myopia - Update

ATOM2 Study – Phase 1 washout

12 months results
ATOM 1 used 1% atropine and showed a slowed progression of myopia, but with unacceptable effects on accommodation, pupil dilation and ocular allergy.

ATOM 2
- Double masked, single centre trial
- 6-12 yo patients with
 - Myopia >2.0D, <1.5D cyl
 - Progression >0.5D in 12/12
- Randomised 2:2:1 to Atropine noite 0.5% vs. 0.1% vs. 0.01%
 - n= 161 155 84

- Phase 1 - 2 year treatment, washout 1 year
- Phase 2 - those with further progression will be retreated

Outcome measures
- Myopic progression at two years
 - Mild <0.5D
 - Moderate 0.50-0.99D
 - Severe >1.00

- Secondary endpoints
 - Progression at one year
 - Axial length change at 1 and 2 years
 - Side effect parameters (accom / near VA / pupil size / allergy / glare etc)
Results

- 2 year data for 89%
- 0.01% no hyperopia shift (0.3-0.4D other groups)

Final myopia progression at 2 years

- 1.0% -0.28 ± 0.92 D ATOM 1
- 0.5% -0.30 ± 0.63 D
- 0.1% -0.38 ± 0.60 D
- 0.01% -0.49 ± 0.60 D

(Placebo -1.20 ± 0.69 D ATOM 1)

Change in Refraction

Figure 2. Mean change in spherical equivalent for groups from baseline, 1 week, and 4 to 24 months with atropine 0.01%, 0.1%, and 0.3% from the ATOM 1 study, and placebo and atropine 1.0% from the ATOM 1 study. A = atropine; ATOM = Atropine for the Treatment of Myopia; D = dioptr; m = months; w = week.

Progression of myopia according to severity

Figure 3. Progression of myopia according to severity (adapted from with atropine 0.1%, 0.3%, and 0.5% from the ATOM 1 study, and placebo and atropine 1% from the ATOM 1 study, at 1 and 2 years. Myopia progression from baseline 2.2 +/- D (mean), 1.5-0.9D (median), and 1.2 D (r) A = atropine; ATOM = Atropine for the Treatment of Myopia; D = dioptr.
Figure 4. Mean change in axial lengths for groups from baseline, 2 weeks, and 4 to 24 months. A = atropine; ATOM = Atropine for the Treatment of Myopia; m = month; w = week.

Atropine for the Treatment of Childhood Myopia: Changes after Stopping Atropine 0.01%, 0.1% and 0.5%

AUDREY CHIA, WEI-HAN CHUA, LI WEN, ALLAN PONG, YAE YEN GOON, AND DONALD TAN

AMERICAN JOURNAL OF OPHTHALMOLOGY
FEBRUARY 2014

Table 1. Demographic and Biometric Parameters of Spherical Equivalent and Axial Length Over Time in the Atropine 0.01%, 0.1% and 0.5% groups.

<table>
<thead>
<tr>
<th>Age at 24 months, mean (SD)</th>
<th>0.01%</th>
<th>0.1%</th>
<th>0.5%</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 months</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Change of BC (mm)</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>0.002</td>
</tr>
<tr>
<td>Baseline to 2 months</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Note: Baseline measurements taken 2 weeks after start of atropine.
*P value is based on the Fisher exact test.
Summary

• Myopic rebound greater in eyes treated with higher doses of atropine
 – Associated with rapid increase in AL in 0.1% and 0.5% groups (and 1%), but a more steady change in AL in 0.01% group
 – Dose related rebound effect
• Paradoxically at 36 months, the myopia progression was larger in 1% group from ATOM1 compared with weaker concentrations in ATOM2
• During washout phase, the SEQ change / AL change ratio was different between different arms

Summary

• During washout phase, the SEQ change / AL change ratio was different between different arms
 – 0.5% 3.5D / mm
 – 0.1% 2.1D / mm
 – 0.01% 1.5D / mm

 – i.e. not AL alone?corneal curvature?lens thickness?ratio of AC depth to PC depth
 – Aetiology of differences unknown?muscarinic receptor types / distribution within the eye

Conclusion

• Atropine 0.01% seems to have less myopic rebound than higher concentrations, which led to a more sustained effect on myopia retardation, and an overall reduction in myopia with
 – No systemic side effects/allergy
 – The least impact on pupil size/near VA
 – Fastest recovery of pupil size/near VA

• Is this the optimal dose